วิธีการหาลำดับของเศษส่วน

Posted on
ผู้เขียน: Louise Ward
วันที่สร้าง: 10 กุมภาพันธ์ 2021
วันที่อัปเดต: 19 พฤศจิกายน 2024
Anonim
การเรียงลำดับเศษส่วน1 (ป.6)
วิดีโอ: การเรียงลำดับเศษส่วน1 (ป.6)

คลาสพีชคณิตมักต้องการให้คุณทำงานกับลำดับซึ่งอาจเป็นเลขคณิตหรือเรขาคณิต ลำดับเลขคณิตจะเกี่ยวข้องกับการได้รับหนึ่งคำโดยการเพิ่มจำนวนที่กำหนดให้กับแต่ละคำก่อนหน้าในขณะที่ลำดับทางเรขาคณิตจะเกี่ยวข้องกับการได้รับคำโดยการคูณคำก่อนหน้าด้วยจำนวนคงที่ ไม่ว่าลำดับของคุณจะเกี่ยวข้องกับเศษส่วนหรือไม่การค้นหาลำดับของบานพับในการพิจารณาว่าลำดับนั้นเป็นเลขคณิตหรือเรขาคณิต

    ดูเงื่อนไขของลำดับและพิจารณาว่าเป็นเลขคณิตหรือเรขาคณิต ตัวอย่างเช่น 1/3, 2/3, 1, 4/3 เป็นเลขคณิตเนื่องจากคุณได้รับทุกคำศัพท์โดยการเพิ่ม 1/3 ของคำก่อนหน้า แต่ในทางกลับกัน 1, 1/5, 1/25, 1/125 นั้นเป็นเรขาคณิตเนื่องจากคุณได้แต่ละเทอมโดยการคูณเทอมก่อนหน้าด้วย 1/5

    เขียนนิพจน์ที่อธิบายถึงคำที่ n ของซีรีส์ ในตัวอย่างแรก A (n) = A (n) - 1 + 1/3 ดังนั้นเมื่อคุณเสียบ n = 1 เพื่อค้นหาเทอมแรกของซีรีส์คุณจะพบว่ามันเท่ากับ A0 + 1/3 หรือ 1/3 เมื่อคุณเสียบ n = 2 คุณจะพบว่ามันเท่ากับ A1 + 1/3 หรือ 2/3 ในตัวอย่างที่สอง A (n) = (1/5) ^ (n - 1) ดังนั้น A1 = (1/5) ^ 0 หรือ 1 และ A2 = (1/5) ^ 1 หรือ 1/5

    ใช้นิพจน์ที่คุณเขียนในขั้นตอนที่ 2 เพื่อกำหนดคำใด ๆ ในซีรีส์หรือเพื่อเขียนหลายคำแรก ตัวอย่างเช่นคุณสามารถใช้นิพจน์ A (n) = (1/5) ^ (n - 1) เพื่อเขียน 10 คำแรกของซีรีส์คือ 1,1 / 5,1 / 25, 1/125, (1 / 5) ^ 4, (1/5) ^ 5, (1/5) ^ 6, (1/5) ^ 7, (1/5) ^ 8 และ (1/5) ^ 9 หรือเพื่อค้นหา คำที่หนึ่งร้อย (1/5) ^ 99